An RNA Mapping DataBase for curating RNA structure mapping experiments

نویسندگان

  • Pablo Cordero
  • Julius B. Lucks
  • Rhiju Das
چکیده

SUMMARY We have established an RNA mapping database (RMDB) to enable structural, thermodynamic and kinetic comparisons across single-nucleotide-resolution RNA structure mapping experiments. The volume of structure mapping data has greatly increased since the development of high-throughput sequencing techniques, accelerated software pipelines and large-scale mutagenesis. For scientists wishing to infer relationships between RNA sequence/structure and these mapping data, there is a need for a database that is curated, tagged with error estimates and interfaced with tools for sharing, visualization, search and meta-analysis. Through its on-line front-end, the RMDB allows users to explore single-nucleotide-resolution mapping data in heat-map, bar-graph and colored secondary structure graphics; to leverage these data to generate secondary structure hypotheses; and to download the data in standardized and computer-friendly files, including the RDAT and community-consensus SNRNASM formats. At the time of writing, the database houses 53 entries, describing more than 2848 experiments of 1098 RNA constructs in several solution conditions and is growing rapidly. AVAILABILITY Freely available on the web at http://rmdb.stanford.edu. CONTACT [email protected]. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics Online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stanford RNA Mapping Database for sharing and visualizing RNA structure mapping experiments

We have established an RNA Mapping Database (RMDB) to enable a new generation of structural, thermodynamic, and kinetic studies from quantitative single-nucleotide-resolution RNA structure mapping (freely available at http://rmdb.stanford.edu). Chemical and enzymatic mapping is a rapid, robust, and widespread approach to RNA characterization. Since its recent coupling with high-throughput seque...

متن کامل

Updates to the RNA mapping database (RMDB), version 2

Chemical mapping is a broadly utilized technique for probing the structure and function of RNAs. The volume of chemical mapping data continues to grow as more researchers routinely employ this information and as experimental methods increase in throughput and information content. To create a central location for these data, we established an RNA mapping database (RMDB) 5 years ago. The RMDB, wh...

متن کامل

doRiNA: a database of RNA interactions in post-transcriptional regulation

In animals, RNA binding proteins (RBPs) and microRNAs (miRNAs) post-transcriptionally regulate the expression of virtually all genes by binding to RNA. Recent advances in experimental and computational methods facilitate transcriptome-wide mapping of these interactions. It is thought that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcriptional regulatory code. We...

متن کامل

A zero one programming model for RNA structures with arclength ≥ 4

In this paper, we consider RNA structures with arc-length 4 . First, we represent these structures as matrix models and zero-one linearprogramming problems. Then, we obtain an optimal solution for this problemusing an implicit enumeration method. The optimal solution corresponds toan RNA structure with the maximum number of hydrogen bonds.

متن کامل

Impact of Gene Annotation on RNA-seq Data Analysis

RNA-seq has become increasingly popular in transcriptome profiling. One of the major challenges in RNA-seq data analysis is the accurate mapping of junction reads to their genomic origins. To detect splicing sites in short reads, many RNA-seq aligners use reference transcriptome to inform placement of junction reads. However, no systematic evaluation has been performed to assess or quantify the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 28 22  شماره 

صفحات  -

تاریخ انتشار 2012